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Abstract

We use both old and new theoretical developments in QCD dispersion rela-
tion constraints on the scalar form factor in the decay K → π`ν` to obtain
constraints on the strange quark mass. The perturbative QCD side of the cal-
culation incorporates up to four-loop corrections, while the hadronic side uses
a recently developed parameterization constructed explicitly to satisfy the
dispersive constraints. Using chiral perturbation theory (χPT) as a model for
soon-to-be measured data, we find a series of lower bounds on ms increasing
with the accuracy to which one believes χPT to represent the full QCD result.
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I. INTRODUCTION

The level of interest in using dispersion relations to study the analytic properties of
Green functions has ebbed and flowed for decades. Recently, attention has increased due to
studies of bounds obtained on form factors from heavy hadron semileptonic decays, which
can be used in concert with Heavy Quark Effective Theory to isolate the CKM elements
|Vcb| and |Vub| (see [1] for a compilation of references). Such studies were initially motivated
by the 1981 paper of Bourrely, Machet, and de Rafael [2], which first applied the basic
method of equating the dispersion integral over hadronic form factors to its perturbative
QCD evaluation in the deep Euclidean region, in that paper for the case of K`3 decays.
Here we revisit K`3 decays, armed with new improvements in technique and the promise of
vastly more data to be produced at DAΦNE [3]. Because the dispersive bound uses QCD
to constrain the shape of each hadronic form factor (as a function of momentum transfer),
one can use the experimentally measured form factors to obtain limits on QCD parameters
such as the quark masses; however, until this data is available, one can use precisely the
same method to take the form factor from a given model or calculation as being correct,
and discover limits on values of the QCD parameters for which the shape of the form factor
is consistent with the dispersive bounds.1

In particular, we use the one-loop corrected chiral perturbation theory (χPT) result of
Gasser and Leutwyler [4] for the scalar form factor in K`3 decays. The scalar form factor
is especially interesting because it contributes to the scalar current correlator, which is
proportional to (ms−mu)2 (i.e., vanishing for flavor-conserving processes), and is thus more
sensitive to quark mass values. Moreover, it satisfies low-energy theorems in χPT to a
high degree of precision. Our results may also be used for the vector form factor to obtain
interesting information, but our thrust in this paper is to show how experiment will be able
to teach us about limits on ms, and specifically, that the consistency of χPT and QCD
places substantial lower limits on the strange quark mass.

This paper is organized as follows: In Sec. II we summarize the most important parts
of the dispersion relation approach with references to papers explaining the fine points in
more detail, as well as describe our χPT inputs. Section III presents the QCD result for the
scalar current correlator to four loops, including leading nonperturbative effects. In Sec. IV
we present improved versions of the analytic functions used to parameterize form factors
consistent with QCD and describe how to judge the quality of fits to this form. In Sec. V
we present our results and conclude.

II. USING THE DISPERSION RELATIONS AND χPT

By means of Cauchy’s theorem, the dispersion integral simply relates an integral of a
Green function (in our case, a current two-point correlator) expressed over a kinematic region

1Alternately, one could insist that particular QCD inputs are correct and use the bounds to obtain
limitations on the consistency of the model with QCD. Since we are using the model as a proxy
for real data, we do not follow this approach here.
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of momentum transfer q2 where hadronic quantities conveniently describe the physics, to the
Green function itself evaluated at a point deep in the Euclidean region, where perturbative
QCD is reliable. In the present case, the current is V µ = s̄γµu, whose divergence ∂ · V =
i(ms−mu)(s̄u) is just the scalar current multiplied by an explicit factor of quark masses; it
is this feature that leads us to interesting bounds on ms. The scalar correlator, related to
the vector correlator by means of a Ward identity, is given by

ψ(Q2) = i
∫
d4x eiqx〈0|T∂µV µ(x)∂νV

ν(0)†|0〉, (2.1)

where Q2 ≡ −q2. The unsubtracted dispersion relation reads

ψ(Q2) =
1

π

∫ ∞
0

dt
Imψ(t)

(t+Q2)
. (2.2)

The n-times subtracted form of (2.2) is readily obtained by taking Q2 derivatives on both
sides, and in the remainder of this section we take ψ(Q2) to mean the perturbatively com-
puted two-point function with any fixed number of subtractions.

The l.h.s. of (2.2) is evaluated at a point Q2 far from the resonant region of V µ, which for
s→ u transitions is satisfied when Q2 � Λ2

QCD. In practice, we choose Q2 = 4 GeV2, which
is popular in lattice simulations. The r.h.s. of (2.2) is expressed as a sum of integrals over
hadronic quantities. It is a manifestly nonnegative quantity, and so neglecting any subset of
contributions produces a strict inequality, in that any subset of hadronic form factors in any
kinematic region connected by crossing symmetry is limited by an expression computable
in QCD. In particular, integrals of the form factors for K → π in the crossed kinematic
region of (vacuum → K̄π) are bounded, leading to restrictions on the shape of form factors
permitted by QCD. The tightness of these bounds is of course regulated by numerical inputs
to the QCD calculation, and particularly in this case by ms. It is precisely this sensitivity
that is useful to us: Given the shape of a K → π form factor obtained from data or a model,
one may ask which values of ms permit this shape to be consistent with QCD.

The derivation of the bounds on the shapes of semileptonic decay form factors and its
expression in terms of a well-defined parameterization draws upon techniques developed in
Refs. [2], and [5–7], and the approach is explained in detail in [6]. Here we present expressions
only to establish notation for later use. Beginning with the kinematic points

t± ≡ (mK ±mπ)2, (2.3)

it is convenient in such decays to use the kinematic variable

z(t; ts) ≡
√
t+ − t−

√
t+ − ts√

t+ − t+
√
t+ − ts

, (2.4)

where ts < t+ is a kinematic scale fixed for convenience, as described below. For each
form factor F (t) there is a computable function φF (t; ts;Q2) obtained from (2.2), and in
terms of these quantities all functional forms for the form factors allowed by QCD may be
parameterized by

F (t) =

√
ψ(Q2)

φF (t; ts;Q2)

∞∑
n=0

an z(t; ts)
n , (2.5)
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where the coefficients an are unknown parameters obeying

∞∑
n=0

|an|2 ≤ 1 . (2.6)

This result employs analyticity of the two-point function away from hadronic thresholds,
crossing symmetry between the matrix elements for K̄π production and K → π, and knowl-
edge of QCD at Q2. To lowest order in GF this form is exact, for there are no resonant
poles, multiparticle continuum states, or anomalous thresholds in the scalar channel below
the threshold t = t+ of (vacuum → K̄π). To be precise, one must also distinguish the two
isospin channels (vacuum → K̄0π−) and (vacuum → K−π0). Apart from a small explicit
isospin breaking in the form factors, whose inclusion is described below, the two channels
have slightly different values of t±. Since nonanalytic q2 behavior in the correlator, which
arises from physical and anomalous particle thresholds, is what determines the form of the
parameterization (2.5), we take t+ to be the smaller of the two possibilities, (mK+ +mπ0)2,
so that no threshold is ever crossed in the region where (2.5) is used.

The two form factors relevant to K`3 decays are defined by

〈π(p′)|V µ|K(p)〉 = 2f+(q2)

(
pµ − p · q

q2
qµ
)

+ d(q2)
qµ

q2
(2.7)

where qµ = (p− p′)µ. This decomposition separates the vector f+ and scalar d form factors,
and consequently the bounds studied in this work apply to d. In the differential width,
|d(q2)|2 appears multiplied by a helicity suppression factor of m2

` .
In lieu of very precise experimental information, we use the results [4] of one-loop chiral

perturbation theory for the scalar form factor as “data”. At two kinematic points in par-
ticular, q2 = 0 and q2 = (m2

K −m2
π), predictions of amazing precision have been made. At

q2 = 0, the authors of [4] find

fK
0π−

+ (0) = 0.977, fK
+π0

+ (0) = 0.998. (2.8)

By the Ademollo-Gatto theorem [8], the symmetry relation f+(0) = 1 is violated by terms
of order m2

s, and we see these percent-level deviations in the predictions (2.8). Uncertainties
on (2.8) are even smaller, perhaps a few parts per 103. The relation to the scalar form factor
at this point is

d(0) = (m2
K −m2

π)f+(0). (2.9)

At q2 = (m2
K −m2

π), the value of d(q2) is given by the Callan-Treiman relation [9],

d(m2
K −m2

π) = (m2
K −m2

π)

(
fK
fπ

+ ∆CT

)
, (2.10)

where fK/fπ = 1.22 ± 0.01, and ∆CT measures deviations from the exact Callan-Treiman
limit. As calculated in [4], ∆CT = −3.5 · 10−3. Since no strange 0+ resonances appear
until the relatively high mass K∗0(1430) and K∗0 (1950), the form factor in the decay region
should be very smooth (and indeed, almost linear) to a very good approximation. It is
therefore very reasonable to assume that the scalar form factor is given in the intermediate
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region, i.e., between q2 = 0 and q2 = (m2
K − m2

π), by chiral perturbation theory to the
same accuracy as at the endpoints. It is, of course, difficult to estimate this error, although
some indication may be obtained from a forthcoming two-loop χPT calculation [10], despite
the possible appearance there of currently undetermined renormalization constants. At any
rate, since the one-loop corrections to the low-energy theorems are already quite small, the
whole framework of χPT would crumble if new experiments showed deviations from the
predictions by more than a few percent.

III. THE SCALAR CORRELATOR IN QCD

Instead of the divergent scalar correlator ψ(Q2), we consider its second derivative ψ′′(Q2),
which is free of renormalization point dependence and therefore satisfies a homogeneous
renormalization group (RG) equation. ψ′′(Q2) is calculated in perturbative QCD for large
Q2 using an expansion in powers of the quark masses and the operator product expansion.
The leading term has been calculated to four loops [11], and theO(m2

s/Q
2) correction to three

loops [12]. The O(m4
s/Q

4) contribution is best considered together with the nonperturbative
condensate terms. Collecting these results,

ψ′′(Q2) =
6(ms −mu)2

(4π)2Q2

{
1 +

11

3

(
αs
π

)
+
(
αs
π

)2 (5071

144
− 35

2
ζ(3)

)

+
(
αs
π

)3
[
−4781

9
+

1

6

(
4748953

864
− π4

6
− 91519

36
ζ(3) +

715

2
ζ(5)

)
+

475

4
ζ(3)

]}

−12(ms −mu)2m2
s

(4π)2Q4

{
1 +

28

3

(
αs
π

)
+
(
αs
π

)2 (8557

72
− 77

3
ζ(3)

)}

+
(ms −mu)2

Q6

{
2〈msūu〉

[
1 +

23

3

(
αs
π

)]
− 1

9
IG

[
1 +

121

18

(
αs
π

)]
+Is

[
1 +

64

9

(
αs
π

)]
− 3

7π2
m4
s

[(
π

αs

)
+

155

24

]}
, (3.1)

where the RG-invariant condensate combinations Is and IG are given by

Is = ms〈s̄s〉+
3

7π2
m4
s

[(
π

αs

)
− 53

24

]
, (3.2)

IG = −9

4

〈
αs
π
G2
〉 [

1 +
16

9

(
αs
π

)]
+ 4

(
αs
π

) [
1 +

91

24

(
αs
π

)]
ms〈s̄s〉

+
3

4π2

[
1 +

4

3

(
αs
π

)
m4
s

]
, (3.3)

where we have set nf = 3 and omitted logarithms that vanish when taking µ = Q ≡
√
Q2.

Note that the peculiar π/αs terms cancel. The full result depends logarithmically on the
renormalization point µ and on the parameters of the theory, like αs, ms, and condensates,
which are renormalized at µ; however, as has been advocated in [13], we implement the RG
improvement for the case of the scalar correlator in the following way: ψ′′(Q2) is evaluated
at µ = Q, and the parameters αs and ms are extrapolated from a chosen reference point
(in our case ΛMS) to µ = Q using the four-loop beta functions (compiled in [13]). The
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condensates are so poorly known and their effect at the chosen scale Q2 = 4 GeV2 so small
that their µ dependence may be ignored.

The numerical values chosen for the QCD inputs are Q2 = 4 GeV2, Λ
nf=3

MS
= 380 ± 60,

mu = ms/25, 〈msūu〉 = 〈mss̄s〉 = −f2
Km

2
K = −0.031 GeV4, and 〈αsG2/π〉 = 0.02–0.06

GeV4, although the sensitivity of the analysis to these nonperturbative parameters is small.
The scale Q is arbitrary subject to the constraints that if it is too small, perturbative QCD
is unreliable, while if it is too large, the dispersive bounds thus obtained are weak.

IV. PARAMETERIZATION AND QUALITY OF FIT

In order to use the parameterization of Eq. (2.5), one requires expressions for the function
φ for each form factor. In notation designed to be similar to that of [2], we define

β0 ≡
√

t+
t+ − ts

, β1 ≡
√
t+ − t−
t+ − ts

, β2 ≡
√
t+ +Q2

t+ − ts
. (4.1)

Note that, in our notation, one must set the parameter ts = −Q2 to obtain the limit of
Ref. [2], in which case β2 = 1. The φ for each form factor defined in Eq. (2.7) is given by

φd(z) =

√
η2

2π

(1 + z)

(1− z)2

1

t+ − ts

[
β0 +

1 + z

1− z

]−1 [
β1 +

1 + z

1− z

]1/2 [
β2 +

1 + z

1− z

]−3

, (4.2)

φf+(z) =

√
η2

48π

(1 + z)2

(1− z)3

√
Q2

t+ − ts

[
β0 +

1 + z

1− z

]−3 [
β1 +

1 + z

1− z

]3/2 [
β2 +

1 + z

1− z

]−2

. (4.3)

These expressions for φ differ from those in [1], because the dispersion integrals are formu-
lated using different linear combinations of the two polarization tensor component functions
than used in the other work, leading to a different pattern of subtractions. The factors η
represent Clebsch-Gordan coefficients based on isospin symmetry; that is, both charged and
neutral K processes contribute to the dispersion relation, so we exploit the near equality of
their contributions. For the decay KL → π±`∓ν` (whose width equals, by CPT, either that
for K0 or K̄0 semileptonic decays), η2 = 3/2, while for K+ → π0`+ν`, η2 = 3. If isospin
breaking between charged and neutral K processes is significant, one can incorporate this
difference into η2, or even include a factor with q2 dependence (written in terms of z) if the
pattern of isospin breaking is known. In practice, we obtain a conservative correction to
η2
K+ = 3 by supposing that the form factor ratio represented by (2.8) at q2 = 0 persists for

all values of q2 in the K̄π production region, to obtain an effective η2
K+ = 2.92.

In the original work [2], the bounds are expressed as the determinant of an n × n
semipositive-definite matrix, where the form factor is assumed known at (n − 2) points.
This produces an envelope of allowed form factors resembling a chain of sausages, since the
form factor is required to pass through each of the (n−2) points. Although presented explic-
itly in [2] for only 1 or 2 fixed points, the determinant method can of course be generalized to
an arbitrary number of points, with a corresponding increase in the complexity of algebraic
expressions appearing (see, e.g., [14]). However, once the envelope of points allowed by the
dispersion relation and chosen fixed points is established, it is not true that any curve lying
within this envelope still satisfies the dispersive bound. In contrast, the parameterization of
Eq. (2.5) subject to (2.6) always satisfies the determinant bound of arbitrarily high degree.
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The central features that make the parameterization (2.5) useful are the bound (2.6)
on the coefficients an and the smallness of the kinematic variable z over the full range for
allowed semileptonic decay. It follows that one may express the form factor over the full
range using only the first N + 1 parameters {a0, a1, . . . , aN}, with the remaining infinite set
bounded in magnitude and forming a theoretical truncation error [7], δN :

δN ≡

√
ψ′′(Q2)

|φ(z)|

√√√√1−
N∑
n=0

|an|2
|z|N+1√
1− |z|2

, (4.4)

which means that the form factor fit to these parameters using (2.5) has a theoretical un-
certainty no larger than δN .

The kinematic parameter ts is used to minimize the size of this already small truncation
error [1,5]. Equation (4.4) makes it clear that this minimization occurs when z = 0 lies
within the kinematic range chosen for the fit, t ∈ [tmin, tmax]; from (2.4) one sees that this
can occur only if ts also assumes some value in this range. Therefore, the truncation error
is minimized by plotting (4.4) as a function of t, ts ∈ [tmin, tmax], and finding that value of ts
for which the maximum value over all t ∈ [tmin, tmax] is smallest.

Now suppose that the “data”, in our case the χPT expression for the form factor, has
an “experimental” uncertainty ∆. In order to state that χPT “data” agrees with QCD to
within ∆, it must be possible to expand the QCD fit to an order N such that

∑N
n=0 |an|2 ≤ 1

and δN ≤ ∆. In other words, in order to be certain that the exact all-orders QCD form
factor Fexact (which is not accessible to us) lies within an uncertainty ∆ of the data FχPT, we
require that the deviation δN of the truncated QCD form factor Ftrunc from Fexact is smaller
than2 the experimental uncertainty ∆. This is the central argument of our reasoning.

The requirement that both δN ≤ ∆ and (2.6) are satisfied is the key to obtaining bounds
on parameters in ψ′′(Q2), in particular ms. A curve such as FχPT, which does not à priori
satisfy (2.6), when expanded as a power series in z eventually produces a value of aN for
some N so large that (2.6) is violated. This does not necessarily mean that FχPT violates
QCD, because it is only required to equal the Fexact within an uncertainty of ∆. However,
the value of N must be large enough that δN ≤ ∆, or else Ftrunc expanded to n = N is
not necessarily a good enough approximation to use in place of Fexact; if it is not possible
to carry out this fit and maintain Eq. (2.6), then the chosen inputs are not consistent with
QCD bounds. When the fit is successful, one concludes that the true QCD form factor is
actually given by the fit of the χPT form factor to the parameterization up to order N ,
and the higher-order terms cannot be probed with χPT since they lie within our stated
uncertainty ∆.

The particular nature of the fit is irrelevant to us, since one requires additional physical
input to distinguish two curves that otherwise satisfy all the requisite conditions. For exam-
ple, we use (2.5) and choose to Taylor expand the χPT form factor in z as an expression for

F (z)φF(z)/
√
ψ′′(Q2), to obtain an values until (2.6) is violated and throw away all higher

2If one prefers to combine the theoretical and experimental uncertainties, then the requirement
becomes |Ftrunc− FχPT| <

√
∆2 − δ2

N .
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an. Alternately, one may choose a highest-order N and perform a χ2 fit to {a0, a1, . . . , aN}
subject to the constraint (2.6); this would be the preferred method of analysis with binned
data.

Now consider the dependence of the bounds on the strange quark mass, which enters

approximately linearly in
√
ψ′′(Q2) as seen in (3.1). If one fixes all other quantities and

decreases ms, it is clear from (2.5) that one obtains the same form factor by increasing each
an by the same factor. However, eventually the an’s are large enough to saturate (2.6), and
thus one finds a minimal allowed value for ms. There is no corresponding maximal value,
for one can certainly make each an as small as desired and still satisfy (2.6). Furthermore,
as we increase the precision ∆ to which we believe the χPT form factor holds, δN must
decrease, so that we must go to a higher order N in the parameterization expansion. It
becomes increasingly more difficult to avoid large values of an unless ms is increased, so the
lower bound on ms becomes larger as ∆ decreases.

V. RESULTS AND CONCLUSIONS

We present lower bounds on ms ≡ mMS
s (1 GeV) from the form factor F (t) ≡ d(t)/(m2

K−
m2
π) of K+ → π0`+ν`, since its bound (due to the isospin factor η) is roughly

√
2 tighter than

that from KL decay, as described above. The natural tendency for the truncation errors δN
is to decrease an order of magnitude with each unit of N , since zmax ≈ −zmin ≈ 0.1 for
optimal values of ts over the range tmin = 0, tmax = (m2

K −m2
π); however, this is somewhat

counteracted by the fact that δN ∝
√
ψ′′, which increases when the smallest allowed value

of ms increases with N . Moreover, δN can be much smaller than the numbers we present,

since we do not include the effects of the
√

1−∑n |an|2 term in (4.4); near the saturation

of (2.6) by the first few terms, this is a large suppression.
Our numerical results are summarized in Table I. The conclusion we draw is that, if the

χPT form factor calculation is believed only to a precision of 2–5%, then we conclude only
that ms > 40 MeV. At a precision of 1

2
–1%, ms > 90 MeV, and at 1/20%, ms > 140 MeV.

The same sort of analysis will be possible with data, although the details of the fit will differ
somewhat.

We conclude by comparing briefly with other recent approaches [15–17] that bound
ms using dispersion relations. Typically, what is done is to saturate the hadronic side as
much as possible with phenomenological input from expected pole contributions, and/or a
continuum contribution in the deep Minkowski region of the hadronic integral modeled by
the perturbative QCD result. Often, multiple constraints are obtained by taking moments
of both sides. We view this work as complementary to those approaches. On one hand, it
is minimal in the sense that only K̄π, which is presumably but a small portion of the total
hadronic result, is used in the bounding inequalities; of course, modelers may obtain stronger
bounds by including K̄∗0 poles or continuum contributions at the cost of introducing model-
dependent inputs. Although we considered only one moment in our calculation, certainly
additional moments also give constraints, although then Q2 must be adjusted to larger
values in order to make sure that ψ(n)(Q2) is calculable perturbatively. On the other hand,
it includes data from semileptonic form factors measured over their entire kinematic range,
and so is expected to provide a substantial amount of additional input to such constraints.
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We expect that combined program of calculations from all of these approaches will deliver
rather strong constraints on ms.

N {an} ts(GeV2) ψ′′ · 105 δN,max ∆Fmax ms(MeV)
1 a0 = +0.910 0.144 1.16 1.4 · 10−2 2.8 · 10−2 > 41

a1 = +0.414
2 a0 = +0.418 0.142 5.54 3.1 · 10−3 3.4 · 10−3 > 90

a1 = +0.184
a2 = −0.890

3 a0 = +0.273 0.140 13.01 5.0 · 10−4 1.5 · 10−4 > 139
a1 = +0.118
a2 = −0.584
a3 = −0.756

Table 1. Bounds on ms ≡ mMS
s (1 GeV), fit parameters, and truncation errors based on the

saturation (2.6) of the parameterization (2.5). ∆F is an abbreviation for |Ftrunc − FχPT|.
The numerical value of δN,max here neglects the

√
1−∑n |an|2 term in (4.4), which can be

a large suppression when (as here) (2.6) is nearly saturated by the first N terms.
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